A category theoretical approach to the concurrent semantics of rewriting: adhesive categories and related concepts
نویسنده
چکیده
This thesis studies formal semantics for a family of rewriting formalisms that have arisen as category theoretical abstractions of the so-called algebraic approaches to graph rewriting. The latter in turn generalize and combine features of term rewriting and Petri nets. Two salient features of (the abstract versions of) graph rewriting are a suitable class of categories which captures the structure of the objects of rewriting, and a notion of independence or concurrency of rewriting steps – as in the theory of Petri nets. Category theoretical abstractions of graph rewriting such as double pushout rewriting encapsulate the complex details of the structures that are to be rewritten by considering them as objects of a suitable abstract category, for example an adhesive one. The main difficulty of the development of appropriate categorical frameworks is the identification of the essential properties of the category of graphs which allow to develop the theory of graph rewriting in an abstract framework. The motivations for such an endeavor are twofold: to arrive at a succint description of the fundamental principles of rewriting systems in general, and to apply well-established verification and analysis techniques of the theory of Petri nets (and also term rewriting systems) to a wide range of distributed and concurrent systems in which states have a “graph-like” structure. The contributions of this thesis thus can be considered as two sides of the same coin: on the one side, concepts and results for Petri nets (and graph grammars) are generalized to an abstract category theoretical setting; on the other side, suitable classes of “graph-like” categories which capture the essential properties of the category of graphs are identified. Two central results are the following: first, (concatenable) processes are faithful partial order representations of equivalence classes of system runs which only differ w.r.t. the rescheduling of causally independent events; second, the unfolding of a system is established as the canonical partial order representation of all possible events (following the work of Winskel). Weakly ω-adhesive categories are introduced as the theoretical foundation for the corresponding formal theorems about processes and unfoldings. The main result states that an unfolding procedure for systems which are given as single pushout grammars in weakly ω-adhesive categories exists and can be characetrised as a right adjoint functor from a category of grammars to the subcategory of occurrence grammars. This result specializes to and improves upon existing results concerning the coreflective semantics of the unfolding of graph grammars and Petri nets (under an individual token interpretation). Moreover, the unfolding procedure is in principle usable as the starting point for static analysis techniques such as McMillan’s finite complete prefix method. Finally, the adequacy of weakly ω-adhesive categories as a categorical framework is argued for by providing a comparison with the notion of topos, which is a standard abstraction of the categories of sets (and graphs).
منابع مشابه
Dynamic Categorization of Semantics of Fashion Language: A Memetic Approach
Categories are not invariant. This paper attempts to explore the dynamic nature of semantic category, in particular, that of fashion language, based on the cognitive theory of Dawkins’ memetics, a new theory of cultural evolution. Semantic attributes of linguistic memes decrease or proliferate in replication and spreading, which involves a dynamic development of semantic category. More specific...
متن کاملProcesses for Adhesive Rewriting Systems
Rewriting systems over adhesive categories have been recently introduced as a general framework which encompasses several rewriting-based computational formalisms, including various modelling frameworks for concurrent and distributed systems. Here we begin the development of a truly concurrent semantics for adhesive rewriting systems by defining the fundamental notion of process, well-known fro...
متن کاملUnfolding Grammars in Adhesive Categories
We generalize the unfolding semantics, previously developed for concrete formalisms such as Petri nets and graph grammars, to the abstract setting of (single pushout) rewriting over adhesive categories. The unfolding construction is characterized as a coreflection, i.e. the unfolding functor arises as the right adjoint to the embedding of the category of occurrence grammars into the category of...
متن کاملAbstract True Concurrency: Adhesive Processes
True Concurrency: Adhesive Processes Paolo Baldan, Andrea Corradini, Tobias Heindel, Barbara König, and Pawe l Sobociński 1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy 2 Dipartimento di Informatica, Università di Pisa, Italy 3 Institut für Formale Methoden der Informatik, Universität Stuttgart, Germany 4 Computer Laboratory, University of Cambridge, United Kingdom Abst...
متن کاملAdhesivity Is Not Enough: Local Church-Rosser Revisited
Adhesive categories provide an abstract setting for the doublepushout approach to rewriting, generalising classical approaches to graph transformation. Fundamental results about parallelism and confluence, including the local Church-Rosser theorem, can be proven in adhesive categories, provided that one restricts to linear rules. We identify a class of categories, including most adhesive catego...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009